
Comparison of Regression Methods, Symbolic Induction Methods andNeural Networks in Morbidity Diagnosis and Mortality Prediction inEquine Gastrointestinal ColicTuomas Sandholmsandholm@cs.umass.eduUniversity of Massachusetts at AmherstDepartment of Computer ScienceAmherst, MA 01003 Carla Brodleybrodley@ecn.purdue.eduPurdue UniversitySchool of Electrical and Computer EngineeringWest Lafayette, IN 47907Alexandar VidovicHochmoor Animal ClinicVon Braun Stra�e 1048712 Gescher-Hochmoor, Germany Markus Sandholmmarkus.sandholm@helsinki.�Helsinki University, Dept of Clinical SciencesFaculty of Veterinary MedicineBox 57, FIN-00014 Helsinki, FinlandAbstractClassi�er induction algorithms di�er on what induc-tive hypotheses they can represent, and on how theysearch their space of hypotheses. No classi�er is bet-ter than another for all problems: they have selectivesuperiority. This paper empirically compares six clas-si�er induction algorithms on the diagnosis of equinecolic and the prediction of its mortality. The classi-�cation is based on simultaneously analyzing sixteenfeatures measured from a patient. The relative mer-its of the algorithms (linear regression, decision trees,nearest neighbor classi�ers, the Model Class Selectionsystem, logistic regression (with and without featureselection), and neural nets) are qualitatively discussed,and the generalization accuracies quantitatively ana-lyzed. 1 IntroductionEquine colic|a painful acute abdominal crisis|attributable to gastrointestinal tract disease is theleading cause of death in adult horses. Colic horsesrequire immediate clinical decision making as they of-ten need surgery to open up mechanical obstructionsand to remove necrotic parts of the intestine. Endo-toxaemia is a typical characteristic of colic. Survivallargely depends on host responses. The patients actu-ally die due to a hyperbolic in
ammatory response thatinvolves numerous biological pathways. It is not knownwhy some horses (non-survivors) hyperreact and fur-ther, which particular regulation mechanism within thein
ammatory cascade goes wrong. The process of in-testinal colic is dynamic and currently there is no safeindicator to tell the point at which the horse is "overthe edge" and cannot be saved. The disease culminatesin 
uid- and acid-base disturbance, di�use coagulopa-thy, multiple organ dysfunctions, and �nally death.Due to the high mortality rate in the surgery andthe high cost of the operation (about US$ 10,000), onewould like to only operate on horses that A) actuallyhave the disease, and B) will survive the operation.This gives rise to two classi�cation problems: morbid-ity diagnosis (sick or healthy), andmortality prediction(survives or dies).The data consisted of 105 horses with severe gas-trointestinal colic; 42 colic horses died within threedays and 63 survived the colic episode. Another 52healthy horses served a a control set in the morbid-ity diagnosis problem. The predictor data, collectedat admission to the clinic, included sixteen features:

pulse rate, breath rate and the following laboratorymeasurements: PCV, HCO�3 , base excess, anion gap,plasma Na+, K+, Cl�, �brinogen, D-dimer, endotoxin,the enzymes SDH, GLDH, PLA2, and a D-dimer to �b-rinogen ratio.Several studies have analyzed the diagnostic andprognostic value of individual features and featurecombinations in equine colic; for a review, see Sand-holm et al. (1995). High pulse rate associated withhigh packed cell volume, dull color of mucus mem-branes, delayed oral mucus capillary re�ll time, dis-turbances in acid-base parameters|such as increasedlactate or anion gap|and a hypercoagulative condi-tion have been used as predictors for poor progno-sis. In other words, pathophysiological knowledge hasguided decision making. Multiple logistic regressionhas been used to combine various predictors for mostaccurate prediction so far (Reevers et al. 1992). Re-cently Sandholm et al. (1995) reported that increasingheart rate and plasma D-dimer together with decreas-ing chloride was a typical risk factor for non-survival,and that these three features could be used to enhancethe accuracy of the logistic regression.This paper discusses the application of symbolic in-duction algorithms, neural networks, and statisticaltechniques to morbidity diagnosis and mortality pre-diction in equine colic. There were three objectives tothis research. The �rst was to �nd the method thatresults in the most accurate classi�cation of morbidityand mortality by intelligently using di�erent measuredfeatures of a patient simultaneously. The second was togain further insight into the strengths and weaknessesof the available classi�er construction algorithms. Thethird objective was to determine which features are ac-tually useful in the prediction and should therefore bemeasured from horses in clinics.The remainder of this paper is organized as follows.Section 2 describes how the the di�erent classi�ers wereevaluated. Section 3 discusses the di�erent classi�er in-duction methods, and presents qualitative comparisonsand quantitative evaluation results. Section 4 discussesthe pruning of features that are not relevant. Section 5concludes and presents directions for future work.2 Experimental classi�er evaluationTo allow for fair comparison, each of the various classi-�er construction methods was applied using the sameexperimental conditions. To assess the ability of each



method to produce an accurate classi�er we average,for each method, the results of ten runs. For each runwe split the original data randomly into two sets; 90%of the data was used to form the classi�er and the re-maining 10% was used to evaluate the classi�er. Wehold back 10% of the data for testing because the goalof a classi�er construction method is to create a clas-si�er that will provide a high degree of accuracy whenused to classify previously unseen cases.1 For each ofthe 10 splits, the few missing feature values were re-placed with the class average observed for the featurein the training set.To ensure that the distribution of cases across theclasses of sick and healthy (similarly died and survived)is the same in the training and test sets, we �rst sortedthe data into these two groups. We then dealt thehorse cases out randomly to the training and test setsin the speci�ed proportions (90 and 10). Each methodwas run using the same partitions. In the experimentswe report the average of each method's generalizationaccuracy: accuracy on the independent test sets.3 Classi�er induction methodsIn addition to traditional classi�cation methods such aslinear regression and logistic regression, several dozenclassi�er construction algorithms have been developedin the last few decades in the machine learning com-munity, including various versions of perceptron (Nils-son 1965), version space (Mitchell 1977), decision tree(Quinlan 1986), instance-based (Duda & Hart 1973),and neural net algorithms (Rumelhart & McClelland1986). The results of empirical comparisons of existingalgorithms illustrate that each algorithm has a selectivesuperiority: it is best for some but not all classi�ca-tion tasks (Brodley 1993). Selective superiority arisesbecause each learning algorithm searches within a re-stricted hypothesis space de�ned by its class of models.For example, the class of �rst-order linear regressionmodels is not appropriate when the data is best �t bya second-order linear regression model. In addition,each method has a speci�c strategy for exploring itshypothesis space; exploring the entire is space is typi-cally computationally infeasible.The existence of selective superiority can also be eas-ily shown by a theoretical argument. Say that onewants to show that classi�er A is better than classi�erB on all classi�cation problems in terms of accuracyon feature vectors that are not in the training set. Aclassi�er is a mapping from feature vectors to classes.For classi�er A to be better than B, these two clas-si�ers have to have di�erent classi�cations for somefeature vectors. If both classi�ers are consistent withthe training set, then the feature vectors on which thetwo classi�ers predict di�erent classes cannot be thetraining set. Let an adversary pick the correct classfor these feature vectors. Now, the adversary can pickso that A misclassi�es all of them, while B classi�es allof them correctly. Thus for this labeling, B is a betterclassi�er than A, which disproves the attempted argu-ment. Thus no classi�er can be better than another in1If the evaluation were done on the same data as thetraining, some methods would achieve 100% accuracy, be-cause they would remember the classes of the training ex-amples correctly.

general in the sense of generalization accuracy, becausean adversary can refute this claim.This paper compares six methods for constructingclassi�ers in the morbidity diagnosis and mortalityprediction problems: linear regression, decision trees,nearest neighbor classi�ers, the Model Class Selec-tion system, logistic regression, and 3-layer feedforwardneural networks. These methods, their relative merits,and the results regarding classi�cation accuracy arediscussed in the following subsections.3.1 Linear regressionA linear threshold unit (LTU) (Nilsson 1965) is a bi-nary test of the form W TY � 0, where Y is a vectorconsisting of a constant 1 and the n features that de-scribe the instance. W is a vector of n+1 coe�cients,also known as weights. If W TY � 0, then the LTU in-fers that Y belongs to one class A, otherwise the LTUinfers that Y belongs to the other class B.To �nd the set of weights that leads to an accurateclassi�er, we used the Recursive Least Squares (RLS)Procedure (Young 1984). RLS, invented by Gauss, is arecursive version of the Least Squares (LS) Algorithm.An LS procedure minimizes the mean squared error,Pi(yi � ŷi)2 of the training data, where yi is the truevalue and ŷi is the estimated value of the dependentvariable, y, for feature vector i. For discrete classi�ca-tion problems, the true value of the dependent variable(the class) is either c or �c. In our implementation ofthe RLS procedure we use c = 1. Note that a procedurethat minimizes the mean squared error between the es-timates and the true value of the dependent variableis a maximum likelihood estimator for the coe�cients.However, although RLS is a MLE, if the data are notlinearly separable then the LTU will not be able tocapture the exact underlying structure of the data.3.2 Decision treeA univariate decision tree is either a leaf node contain-ing a classi�cation or a node containing an attributetest. In the latter case, the node contains a branch toa decision tree for each value of the attribute. To clas-sify a feature vector using a decision tree, one startsat the root node and �nds the branch correspondingto the value of the test attribute observed in the fea-ture vector. This process repeats at the subtree rootedat that branch until a leaf node is reached. The fea-ture vector is then assigned the class label of the leaf.One well-known approach to constructing a decisiontree is to grow a tree until each of the terminal nodes(leaves) contains training instances from a single classonly. The tree can then be pruned back with the ob-jective of reducing the misclassi�cation rate. Our al-gorithm uses reduced error pruning (Quinlan 1987),which replaces a subtree with a leaf if it reduces theerror on a set of data independent from the trainingdata. (Note that this requires that we retain a portionof the training data to use for pruning the tree).To select a test for a node in the tree, we choose thetest that maximizes the information-gain ratio metric(Quinlan 1986). Univariate decision tree algorithmsrequire that each test have a discrete number of out-comes. To meet this requirement, each ordered featureAi is mapped to a set of unordered features by �ndinga set of Boolean tests of the form Ai > b, where b is



in the observed range of Ai. Our algorithm �nds thevalue of b that maximizes the information-gain ratio.To this end, the observed values for Ai are sorted, andthe midpoints between class boundaries are evaluated(Quinlan 1986; Fayyad & Irani 1992).Decision trees are restricted to placing boundaries inthe feature vector space that are orthogonal to each ofthe feature axes. Therefore if there is any relationshipamong the features it may not be captured well. Onthe other hand, unlike linear machines, decision treesare not restricted to dividing the feature vectors lin-early into classes, because any section of the featurevector space that is separated from other parts of thespace by a boundary, can be further split into sub-spaces that carry di�erent class labels. Decision treesare perhaps the most human-understandable learningmethod, which is important for trying to explain clas-si�cation decisions.3.3 Nearest neighbor classi�erA k-nearest neighbor classi�er (Duda & Hart 1973) isa set of n instances, each from one of m classes, thatare used to classify feature vectors according to themajority classi�cation of the feature vector's k nearestneighbors. In this version of the algorithm each in-stance in the training data presented to the algorithmis stored.2 To determine how near a feature vector isto another, the Euclidean distance between the two iscomputed. In our experiments k was set to one.Nearest neighbor classi�ers have a less restrictive hy-pothesis space than linear discriminants and decisiontrees; they form piece-wise linear boundaries in the fea-ture vector space. However, if some of the features thatdescribe the data are irrelevant or noisy then a near-est neighbor classi�er may be inaccurate. One solutionto this problem is to use a learning method to de�neweights for each for the features (Aha 1992; Cost &Salzberg 1993). Indeed, in Section 4 we illustrate thatonly a subset of the features are relevant in the diag-nosis and prediction problems in equine colic.3.4 Model Class Selection (MCS) systemGiven a data set, it is often not clear beforehand whichalgorithm will yield the best performance. In such situ-ations, someone wanting to �nd a classi�er for the datawill be confused by the myriad of choices, and will needto try many of them in order to be convinced that abetter classi�er will not be found easily. Recently, theModel Class Selection (MCS) system has been devel-oped to overcome this problem. MCS applies knowl-edge about the biases (restricted hypothesis spaces andlimited ways of exploring those spaces) of linear dis-criminant functions, decision trees, and nearest neigh-bor classi�ers to conduct a recursive automatic algo-rithm search.MCS uses characteristics of the given data set, in theform of feedback from the learning process, to guide asearch for a tree-structured hybrid classi�er. Heuristicknowledge about the data characteristics that indicatethat one algorithm is better than another is encodedin a rule base. The approach does not assume that the2This is distinct from the entire set of training data; the�ltering mechanism may determine that only part of thedata should be given to the k-nearest neighbor classi�er.

entire data set is best learned using a single algorithm;for some data sets choosing to form a hybrid classi-�er will produce a more accurate classi�er, and MCSattempts to determine these cases. The results of anempirical evaluation illustrate that MCS achieves clas-si�cation accuracies equal to or higher than the best ofits primitive learning components for each of a varietyof data sets, demonstrating that the heuristic rules ef-fectively select an appropriate algorithm(s). Details ofthese experimental results and of the MCS system canbe found in Brodley (1995).Table 1 shows the generalization accuracy of MCSand its component learning algorithms. For the mor-tality data set, MCS has higher accuracy than its prim-itive algorithms. For the morbidity data set, everymethod except for decision trees performs equally well.3.5 Logistic regressionLogistic regression is a well-known statistical methodfor building classi�ers. The idea is to use the logittransformation ln(c=(1 � c)) to recode the classi�ca-tion c which is between zero and one. Then a linearmodel is used to predict ln(c=(1 � c)) based on theinput features. The maximum likelihood estimator isacquired via an iterative least squares method.Again, for each split separately, the classi�er wasconstructed based on the training set and evaluatedon the test set. Before each regression, collinearitywas removed. If a feature was highly correlated with alinear combination of other features, that feature wasdropped from the model. This was repeated with theremaining features until all such collinearities were re-moved.In two-class classi�cation problems, one class is asso-ciated with the values of c close to zero, and the otherwith values close to one. The classi�cation thresholdneed not be at c = 0:5. It was chosen so as to maximizeclassi�cation accuracy on the training data.Logistic regression has a very restricted model class:like linear regression, it can only divide the feature vec-tor space into two regions|one for each class|using ahyperplane. Yet, it has advantages over linear regres-sion. First, it never associates a feature vector with aclass value that is out of range, i.e. greater than oneor less than zero. Second, it tends to assign class val-ues close to one or zero unlike linear regression, whichlinearly assigns values in between also.Table 1 shows the generalization accuracy of MCS,its component algorithms, and logistic regression. Forthe mortality data set, logistic regression did worsethan a linear discriminant and MCS. For the morbiditydata set, it outperformed the other methods.Method Mortality MorbidityLinear discriminant function 66.0 95.3Decision tree 62.0 94.7Nearest neighbor classi�er 64.0 95.3Model Class Selection system 68.0 95.3Logistic regression 65.0 98.8Table 1: Average generalization accuracy (%).3.6 Neural netWe also examined how well the classi�cation prob-lems can be solved using arti�cial neural nets. Unlikethe other methods, the neural network is not a single



method but a collection. To instantiate a speci�c net,one needs to decide the topology|e.g. number of hid-den units and connections|and the parameters for thelearning algorithm that updates the weights in the net.In the experiments, each input feature is an input tothe net, resulting in sixteen input units. The inputswere not coded or normalized in any way. We useda three-layer feedforward neural net architecture, be-cause it can represent any mapping from inputs (froma closed and bounded part of the feature vector space)to outputs, i.e. it has no restrictions on the modelclass (Hecht-Nielsen 1991). Each input unit was con-nected to each hidden unit, and each hidden unit wasconnected to the single output unit. We denoted oneclass with an output of 1 and the other class with a0. During testing, we used a classi�cation thresholdof 0.5 on the output of the net. The input units sim-ply output their input. The hidden units and outputunit output according to the logistic function (Rumel-hart & McClelland 1986). The weights of the connec-tions were updated using the standard backpropaga-tion rule (Rumelhart & McClelland 1986). Backprophas two parameters: learning rate determines how fastthe weights in the net are adjusted and momentum de-termines how slow it is to change the weight changesthemselves on each update (Rumelhart & McClelland1986). In our experiments, learning rate was variedand momentum was set to one tenth of the learningrate.We experimented with di�erent net topologies byvarying the number of hidden units from a low of threeto a high of 31. By exploratory data analysis we nar-rowed the number of hidden units for the tests to �ve,ten and twenty. The results, which are very sensitive tothese changes in topology, are shown in Table 2. Fromthe results it is clear that �ve hidden units was too few.On the other hand, twenty seems to be unnecessarilymany on the mortality task, but is a good number forthe morbidity problem. Increasing the number of hid-den units increases the net's degrees of freedom|andtherefore also the representation power3|and usuallyprovides better accuracy on the training data, but mayresult in lower accuracy on previously unseen test datadue to over�tting of the training data.Each training session included 10,000 passes (epochs)through the training data. After each epoch, the classi-�cation accuracy on the test data was measured. Whenusing neural nets in practise, it is di�cult to knowwhen to stop training. With too few epochs, the netwill not have enough time to learn. With too manyepochs, the net usually over�ts the training data, caus-ing a decrease in classi�cation accuracy on the testdata. On the equine data sets the optimal point tostop training varied between net topologies and learn-ing algorithm parameterizations. Even more problem-atically, it varied widely between di�erent splits of thedata for a given topology and parameterization.Each entry of Table 2 reports four di�erent results.The �rst number reports the average of the highestobserved classi�cation accuracy for each test set, i.e.when the net had already learned, but when it had notyet over�t the training data. This number was mea-3With n inputs, 2n+1 hidden units su�ce to representany mapping from inputs to outputs (Hecht-Nielsen 1991).

sured at the best number of training epochs for eachof the ten splits separately.4 According to these num-bers, the neural net outperforms the other methods|particularly on the di�cult mortality prediction prob-lem. But this is an unfair comparison because the netuses the test data in choosing the classi�er: it gener-ates a di�erent classi�er at each training epoch (basedon the training set), and the best classi�er is chosen(based on the test set) over all epochs. In practice,one would not have this information unless part of thetraining data was retained for this task, which in turncould result in lower accuracy because the net wouldbe trained using fewer training instances. As a moretraditional comparison, the generalization accuracieswere also analyzed at �xed numbers of training epochs(100, 1000, and 10000). This degraded generalizationsigni�cantly, which can be seen in Table 2.Hidden Mortalityunits Learning rate 0.01 Learning rate 0.0015 62.0, 59.0, 59.0, 60.0 63.0, 57.0, 57.0, 53.010 72.0, 56.0, 62.0, 60.0 70.0, 63.0, 59.0, 53.020 71.0, 58.0, 59.0, 61.0 70.0, 56.0, 56.0, 57.0Hidden Morbidityunits Learning rate 0.01 Learning rate 0.0015 75.3, 66.7, 66.7, 66.7 91.3, 66.7, 80.0, 78.010 86.7, 71.3, 66.7, 68.0 99.3, 66.7, 88.0, 86.720 92.7, 68.0, 66.7, 66.7 99.3, 77.3, 94.7, 98.0Table 2: Average generalization accuracy (%). The�rst number is the accuracy when training is stoppedon the best epoch for each of the ten training sets sep-arately. \Best" is measured as classi�cation accuracyon the test set. The second number is the accuracyafter 100 epochs, the third for 1000, and the 4th for10000. 4 Feature selectionIn the method comparison experiments above, all six-teen features were used. It is sometimes advantageousto lower the dimensionality of the feature vector spaceby ignoring some features. This allows a �nite set oftraining instances to populate the space more densely,but may ignore signi�cant predictors.In our feature selection experiments, both the train-ing data and test data were used together. To beginwith, collinear features were removed as in Section 3.5.Then feature selection was performed exhaustively byrunning a linear regression on each possible combina-tion of the features. The criterion for the goodnessof the model was based on the adjusted R2 statis-tic, which takes into account both the residual sumof squares, and the number of features in the model(Statistix User's Manual 1992). In general, the modelwith the higher adjusted R2 was preferred, but whenthe di�erence in the adjusted R2 was small for twomodels (less than 0.0225), the model with fewer fea-tures was chosen. The best model for the morbidityproblem contained four features: endotoxin, K+, pulserate, and D-dimer. The best model for the mortalityproblem contained three features: Cl�, D-dimer and4In 92% of all the splits of the mortality data, highestgeneralization accuracy was achieved by 500 epochs. Sim-ilarly, in 80% of the splits of the morbidity data, highestaccuracy was achieved by 500 epochs.



pulse rate.5Next we analyzed the accuracy of logistic regressionusing these reduced feature sets. For each split wetrained the model on the training data and tested iton the separate test data. The average accuracy on themortality problem increased to 73% but on the mor-bidity problem it dropped to 95.6%. These numbersare not directly comparable to those in Table 1 be-cause the test data was used for feature selection asdescribed above|and thus implicitly for classi�er con-struction. When trained and evaluated on the samedata (training and test data combined), the classi�-cation accuracy of logistic regression on the mortalityproblem increased to 77.5%.5 Conclusions and future researchClassi�er induction algorithms di�er on what inductivehypotheses they can represent, and on how they searchtheir space of hypotheses. For example, linear and lo-gistic regression have very restricted hypothesis spaceswhile three-layer neural nets have an unrestricted hy-potheses space. Yet, no classi�er is better than anotherfor all problems: they have selective superiority. In thispaper we empirically compared six classi�er inductionmethods in the domains of diagnosing equine colic andpredicting its mortality.Morbidity diagnosis was easy for all methods. Theaverage generalization accuracy varied between 94.7%and 99.3%. Logistic regression and neural nets hadthe highest accuracies, but the di�erences between themethods were small. High accuracy was achievable be-cause endotoxin in plasma is an accurate discriminatorbetween sick patients and controls. Mortality predic-tion was di�cult for all methods. The average gen-eralization accuracy varied between 62.0% and 72.0%.Neural nets and MCS had the highest accuracies. Forboth classi�cation tasks, MCS had higher accuracythan any of its base-level methods. The neural netresults are not directly comparable to the other meth-ods because test data was used in choosing the numberof hidden units, the learning rate, and the best time tostop training and generalization accuracy is sensitiveto these choices.Decreasing the number of features reduced the gen-eralization accuracy of logistic regression in morbidityclassi�cation, but enhanced it in mortality predictionfrom 65% to 73%. This is the best generalization ac-curacy achieved on the problem. Test data was usedin feature selection, but not in running the logistic re-gressions. The best classi�er for mortality predictioncontained only three features.The classi�ers provide a convenient way of perform-ing rapid "horse-side" prediction based on a large setof relatively easily measurable patient features. Futurework would include tailoring classi�ers to individualhorse clinics based on their previous cases. Comparisonof the observed mortality with the predicted mortality5Feature selection methods using logistic regressionswith forward addition and backward elimination also foundthe same feature combinations to be the most relevant ones.This happened even though instances with missing featurevalues were ignored and the sixteenth feature (a ratio oftwo other features) was not included among the alterna-tives (Sandholm et al. 1995).
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